
OGI/OHSU Baseline Query-directed Multi-document Summarization
System for DUC-2005

Seeger Fisher, Brian Roark,
Center for Spoken Language Understanding

OGI School of Science & Engineering
Oregon Health & Science University

{roark,fishers }@cslu.ogi.edu

Jianji Yang and Bill Hersh
Department of Medical Informatics &

Clinical Epidemiology
Oregon Health & Science University

{yangj,hersh }@ohsu.edu

Abstract

In this paper, we briefly outline the sentence ex-
traction system that we developed for the 2005
DUC Summarization Evaluation. Training in-
volved learning a sentence ranking model using
Support Vector Machines and some simple fea-
tures. Sentence selection from the ranked list
involved picking sentences with the most non
stop-word overlap with the query. We also fil-
tered some sentences, both based on sentences
already in the summary, and on other sentence-
level features. We employed some simple sen-
tence compression techniques, as well.

1 Introduction

This is the first summarization system that the authors
have developed, and we intend it to be a simple baseline
system that can hopefully be improved over time to be
competitive with other systems. At that point, we would
like to try to move the system beyond simple extraction
with various NLP approaches.

At the highest level, we broke this problem down
into two tasks: 1) sentence ranking based on sim-
ple features; and 2) sentence selection from a ranked
list. For sentence ranking, we used SVMlight
(http://svmlight.joachims.org/), which can be
parameterized to learn a preference ranking. For sen-
tence selection we used a simple overlap metric between
the query and candidate sentence to only select sentences
that were relevant to the query, since the SVM ranking
does not take the query into account.

In the next section, we will first present the training
and application of the sentence ranking approach. Next,
we will present sentence selection from the ranked list.

2 Sentence extraction system

2.1 Sentence ranking

For every cluster of documentsc in the set of clustersC
comprising the training set, letZc be the collection of
manual summaries for that cluster. Lets ∈ c be the sen-
tences in clusterc and z ∈ Zc be the sentences in the
summaries of clusterc. For every clusterc ∈ C we scored
each sentences ∈ c as follows

ρ(s) = argmax
z∈Zk

(rouge(s, z))

where rouge(s, z) is the ROUGE score (Lin and Hovy,
2003) of sentences with z as the reference summary1.
We calculated this value for all sentences in each clus-
ter of the DUC 2005 training data, giving us our “gold
standard” ranking for use in training the system.

For each sentence in a cluster, we extracted a small
number of features for classification. Most of these fea-
tures are aggregated from word-based features. Word-
based features were of three varieties: TF*IDF, log like-
lihood ratio, and log odds ratio statistics. Letf(wc) be
the frequency of wordw in clusterc ∈ C. TF*IDF is
defined as follows:

tf.idf(wc) =
f(wc)

|{c : f(wc) > 0}|
(1)

Let w̄ denote words other thanw and c̄ denote clusters
other thanc. LetN be the total word count in our training
corpus;f(w) the frequency of the word over all clusters;
andf(c) the number of words in clusterc. Then the log
likelihood ratio2 is defined as follows:

loglike(wc) = log
α

β
(2)

where

α = f(c)f(c)f(w)f(w)f(w̄)f(w̄)f(c̄)f(c̄) (3)

1For this work, we used the sum of ROUGE-{1-4} and
ROUGE-L as our score.

2See (Dunning, 1993) for an excellent presentation of the
log likelihood ratio statistic.

and

β = NNf(wc)f(wc)f(w̄c)f(w̄c)f(wc̄)f(wc̄)f(w̄c̄)f(w̄c̄) (4)

The log odds ratio3 is defined as follows:

logodds(wc) = log
f(wc)f(w̄c̄)
f(w̄c)f(wc̄)

(5)

For each string we calculate both the average and the
sum of all three of these word-based statistics as features.
In addition, for the log odds and log likelihood ratios,
we calculated the sum of the statistic for just the three
highest scoring words in the string. Our ninth and final
feature was the position of the sentence in the document.

The reason we used both log likelihood ratios and log
odds ratios is that they score co-occurrence dependencies
differently. The log likelihood ratio captures whether a
word and a cluster occur together at chance or not, and
all scores are positive. A high score can indicate that the
word and the cluster either occur together surprisingly of-
ten or surprisingly rarely. The log odds ratio differs in
that it can be positive or negative – positive indicating
that the co-occurrence is surprisingly often, negative that
it is surprisingly rare, i.e. they are negatively correlated.
In addition, the log odds ratio appears to be somewhat
more sensitive than the log likelihood ratio to the distri-
bution of relatively infrequent words, i.e. those that occur
only a handful of times, which can be quite useful for this
task.

To summarize, our feature set consisted of:
1. average tf.idf 6. average logodds
2. sum tf.idf 7. sum logodds
3. average loglike 8. sum (max 3) logodds
4. sum loglike 9. Sentence position
5. sum (max 3) loglike

For sentence ranking, we used SVMlight
(http://svmlight.joachims.org/), which can
be parameterized to learn a preference ranking, as
documented in (Joachims, 2002). Within each document
cluster, feature values were normalized into the range
[-1,+1], except for the sentence position, which was
simply divided by 20 to make the values of the feature
of roughly the same order as the other features. We
trained our model on an 80 cluster subset of the training
corpus. With the learned parameterizations, a ranking
of candidate sentences can be obtained from the above
mentioned features.

To make word counts robust for feature extraction,
we mapped all words to lower case and removed any
non-alpha-numeric symbols at word boundaries. Words

3See, e.g., (Agresti, 1996) for a nice presentation of the log
odds ratio statistic.

that occur only once in the corpus were mapped to the
“<unk>” symbol. At test time, all non-singleton words
in the set of test clusters are added to the word list,
and term frequencies and document frequencies are taken
over both training and test sets. Note that we did not
perform any stemming or removal of stop-words at this
stage.

2.2 Sentence selection

We combined the SVM ranking of each sentence with
a query relevance for each sentence to get a final rank-
ing. To incorporate the query, we filtered the query of
stop words (consisting of all words occurring in the Penn
Treebank WSJ sections 02-21 at least 500 times) and
stemmed the remaining words. We used the resulting set
of stemmed content words from the query to score each
sentence as to query relevance, simply by counting the
number of stemmed content words in common. We then
picked sentences ranked primarily by the query relevance
score and secondarily by the SVM ranking.

We selected sentences in order from this final ranking
until the summary size limit was reached, with some sen-
tences being filtered. One filter was based on sentence
novelty as compared to the summary so far. To check
for novelty we again stemmed and removed stop words,
this time from the candidate sentence. If the summary
already had at least half of the stemmed content-words
from the candidate sentence, the sentence was not added.
This constraint virtually never occurred in the test sets,
though it did in our training data. Our guess is that since
the training data sets consisted mostly of articles on the
same event, there was a great deal of redundancy com-
pared to the test sets which seemed more often to consist
of articles on related events. We also filtered sentences
of length less than seven words or greater than 50 words.
Sentences starting with a pronoun or quotation mark, or
ending in a quotation mark, were rejected.

We performed a crude compression by removing some
parentheticals, defined as a string of words within a sen-
tence delimited by dashes, double-dashes or em-dashes.
We actually did not filter out strings within parentheses,
since these were usually short and contentful in the train-
ing data.

Finally, we ordered the extracted sentences by the or-
der in which they occurred in their respective documents,
so all first sentences first, then all second sentences, and
so on. We believe for this evaluation it would have helped
to clump sentences from the same document together;
however, our training data consisted mostly of multiple
documents that were about the same event, so mixing
sentences did not present itself as such an issue until the
current evaluation.

3 Evaluation and Future Directions

3.1 Current System Weaknesses

The current summarization system is quite simplistic.
Though we scored better than “the middle of the pack”
(which was our goal), the system has a number of weak-
nesses. The basic architecture of our extraction based
summarizer seems sound enough: (1) ranking sentences
in terms of how likely they are to appear in a summary;
(2) combining that ranking with how likely a sentence
is to answer the query; (3) choosing sentences in the re-
sulting order, while avoiding repetition, and compressing
each sentence when chosen; and (4) re-ordering the sen-
tences. Though we feel this is a sound architecture, each
of the pieces is a work in progress.

In the current system, query relevance is purely lex-
ically driven. Though this approach works reasonably
well when all documents in a cluster are on similar top-
ics, if the same word is used with a different sense, the
current query relevance module will mistake it for a rele-
vant term. This fault would be more problematic if the
document clusters were noisy. One approach to solve
this problem would be to calculate semantic similarity
between a query and a candidate sentence in a more prin-
cipled way, for instance, using Latent Semantic Analysis
(Hofmann, 1999) or Latent Dirichlet Allocation (Blei, et
al., 2003). Another approach would be to use query ex-
pansion in order to enlarge the number of terms in the
query.

Our current sentence compression module is very
light-weight, only deleting a subset of parentheticals.
There are some promising sentence-compression algo-
rithms (Turner and Charniak, 2005). Augmenting such
a compression algorithm with evidence from query terms
or semantic similarity ought to provide good compression
with little loss of valuable content.

The current system re-orders sentences simply by out-
putting them in document order. A problem with this ap-
proach is that it leads to a lack of cohesion, since sen-
tences from different documents are interleaved. The
simplest way to fix this would be to group sentences by
document, then by document order. A more sophisticated
approach would be to use a discourse-cohesion algorithm
to order the sentences.

3.2 Possible Improvements

One area for improvement, at least relative to Pyramid
scores, would be to train our sentence ranker on only the
ROUGE metrics that best correlate to Pyramid scores.
Since we didn’t know these ahead of time, our ranker
used the average of the ROUGE scores for its objective.
We also plan to incorporate some lexical features, with
the intuition that some generic words or phrases may of-
ten indicate a good candidate for extraction.

The current system automatically filters candidate sen-
tences that start with a pronoun. However, since pronouns
most often refer to entities that are more central to a dis-
course, sentences beginning with a pronoun should of-
ten contain relevant information. In order to address this
issue, we plan on incorporating an anaphora resolution
module to determine the referents of at least sentence ini-
tial pronouns.

Anaphora resolution will be facilitated by the incor-
poration of a named entity recognizer into the summa-
rizer. Besides being useful for anaphora resolution, a
named entity recognizer should help with matching query
terms against document terms. Both by providing canon-
ical versions of names, and by providing type informa-
tion about the named entities in a sentence, such a recog-
nizer will make it possible to model the probability that a
sentence is relevant to a query in a more principled way.
With accurate named entity recognition and anaphora res-
olution, it becomes possible to calculate the centrality of
a sentence, which has been shown to be a helpful feature
for ranking sentences (Erkan and Radev, 2004).

In summary, this has served as a useful first step to-
wards building a competitive summarizer, and we hope
to improve it in several ways by the next DUC competi-
tion. At that time, the system will serve as a testbed for
more exploratory improvements.

References
Alan Agresti. 1996.Introduction to Categorical Data Analysis.

John Wiley and Sons, New York.

David Blei, Andrew Ng and Michael Jordan. 2003. La-
tent Dirichlet Allocation.Journal of Machine Learning Re-
search, 3:993–1022.

Ted Dunning. 1993. Accurate methods for the statistics of sur-
prise and coincidence.Computational Linguistics, 19(1):61–
74.

Gunas Erkan and Dragomir Radev. 2004. Lexpagerank: Pres-
tige in multi-document text summarization. InProceedings
of EMNLP.

Thomas Hofmann. 1999. Probabilistic Latent Semantic Index-
ing. In Proceedings of the 22nd Annual ACM Conference on
Research and Development in Information Retrieval.

T. Joachims. 2002. Optimizing search engines using click-
through data. InProceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD).

Chin-Yew Lin and E.H. Hovy. 2003. Automatic evaluation of
summaries using n-gram co-occurrence statistics. InPro-
ceedings of the Human Language Technology Conference
and Meeting of the North American Chapter of the Associ-
ation for Computational Linguistics (HLT-NAACL).

Jenine Turner and Eugene Charniak. 2005. Supervised and
Unsupervised Learning for Sentence Compression. InPro-
ceedings of the 43rd Annual Meeting of the ACL.

